Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation
نویسندگان
چکیده
Motivated by the interior tomography problem, we propose a method for exact reconstruction of a region of interest of a function from its local Radon transform in any number of dimensions. Our aim is to verify the feasibility of a one-dimensional reconstruction procedure that can provide the foundation for an efficient algorithm. For a broad class of functions, including piecewise polynomials and generalized splines, we prove that an exact reconstruction is possible by minimizing a generalized total variation seminorm along lines. The main difference with previous works is that our approach is inherently one-dimensional and that it imposes less constraints on the class of admissible signals. Within this formulation, we derive unique reconstruction results using properties of the Hilbert transform, and we present numerical examples of the reconstruction.
منابع مشابه
Multiscale Interior Tomography using 1D Generalized Total Variation
We propose a method for accurate and fast reconstruction of the interior of a 2D or 3D tomographic image from its incomplete local Radon transform. Unlike the existing interior tomography work with 2D total variation, the proposed algorithm guarantees exact recovery using a 1D generalized total variation semi-norm for regularization. The restrictions placed on an image by our 1D regularizer are...
متن کاملInterior Tomography Using 1D Generalized Total Variation. Part II: Multiscale Implementation
To address the classic interior tomography problem where projections at each view extend only to the shadow of a circular region completely interior to the subject being scanned, previously we showed that the exact recovery of twoand three-dimensional piecewise smooth images is guaranteed using a one-dimensional generalized total variation seminorm penalty which allows a much faster reconstruct...
متن کاملA General Total Variation Minimization Theorem for Compressed Sensing Based Interior Tomography
Recently, in the compressed sensing framework we found that a two-dimensional interior region-of-interest (ROI) can be exactly reconstructed via the total variation minimization if the ROI is piecewise constant (Yu and Wang, 2009). Here we present a general theorem charactering a minimization property for a piecewise constant function defined on a domain in any dimension. Our major mathematical...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملGeneralized methods and solvers for noise removal from piecewise constant signals. II. New methods.
Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 8 شماره
صفحات -
تاریخ انتشار 2015